Pluoioneal Istls amdl
INCIPEIOVOLEAITSHIE

Bruno P. Evangelista (urma)
Alessandro R. Silva (urme)

Revision 2

INCEOdUGCEION

The fast evolution of the programmable
graphics hardware (GPUs) are making the games
very realistic!

= Is it still possible to distinguish between a game
scene and a real-life picture?

SReal-Life - 4 Crysis
- R Y

IntRoduction

The modern GPUs enable us to create many
rendering effects

= We can use these effects to create very realistic
environments

= Or even non-realistic environments

In this lecture we will discuss and show some
effects that are commonly used in games

Rendering Pipeline and Shaders (Quick Review)
Shader Languages

Effects

= Per-Pixel lllumination

- Environment Reflection/Refraction
- Texturing/Multi-texturing

= Procedural Texture Generation

- Simulation of Detailed Surfaces

Pos-Processing Effects
- Radiometry

- Bloom
- Cartoon Rendering

Rendeninggiipeline

For many years, graphics APIs such as DirectX
and OpenGL used a fixed rendering pipeline

= The processes executed within each stage of the

rendering pipeline were pre-programmed in
hardware and cannot be modified

For example: Transformations, lighting and so on...

= It was only possible to configure a few parameters
on the pipeline

Result: Games with resembling graphics!

Meantime...

- The cinema industry already had tools capable of
programming the rendering of the scenes

RenderMan

- Shader language specification created by Pixar in
1988

- Nowadays there are some open-source and
commercial implementations

However, those tools were used just for offline
rendering! =(

Small programs that run into the GPU

Allow the programming of some stages of the
rendering pipeline

New things that you can do:

= Real world illumination models

- Rendering of very detailed surfaces
- Pos-processing over the scenes

And we can use everyting in real-time!

Shaders that run in different stages of the GPU
have different names

- Vertex Shader — Vertex Processing Stage
- Pixel Shader — Pixel Processing Stage
- Geometry Shader — Geometry Processing Stage

Pipeliine

Vertex Data
(Model Space) Rasterization

Vertex Geometry Fragment
Processing Processing Processing

Other Memory Resources
(Buffers, Textures, Constants, etc)

.J Data
Programmable stage
@ Non-Programmable stage

10

WhEt Youl Cam ¢l Wit sinadlersy

Videos and Examples

12

Shraderglfanzuaes

A=)

Offline Rendering
- RenderMan — PRMan Pixar/Other implementations
- @Gelato — nVidia

Real-time Rendering

= HLSL (High Level Shading Language) — Microsoft
Used on DirectX e XNA

= GLSL (OpenGL Shading Language) — 3D Labs
Used on OpenGL

- Cg (C for Graphics) — nVidia
Can be used on both DirectX and OpenGL

12 1LSIG

Has a small set of instrinsic functions

= Arithmetic operations, texture access and flow
control

Has some C/C++ data types, besides vectors
and matrices

= bool, int, half, float, double

= vectors (floatN, boolN, ...), matrices (floatNxV, ...)
= texture, sampler, struct

A shader code looks like a matematical
equation

13

14

ERersEixelslitimiination

The Blinn-Phong algorithm is commonly used
in the graphics APIs for lighting

= Empirical model

- Light is represented by three separated
components: ambient, diffuse and specular

Light componentes
- Ambient: Light equally scattered in the scene
- Diffuse: Light that interacts with the surfaces

= Specular: Light that is perfectly reflected by the
surface

Itotal =i Iambient + E Idiffuse + Ispecular
LIGHTS

15
D Nse amdl Specullar

= Diffuse: Light that is equally = Specular: Light that is reflected
reflected in all directions preferred in one direction

(isotropic) - Preferred reflection direction

= Intensity can be calculated calculated according to Snell’s
according to Lambert’s law law

Idiffuse — Kde(N L) ISpecular — KsIs(R V)Shininess

ImplementincfasyasixelfSirader

Itotal - Iambient o § Idiffuse .y Ispecular
LIGHTS

Liiffuse = KaLa(N.L)
— KsIs (R V)shininess

Ispecular
vold phongLighting(in floati normal, in floati lightWeo,
in floati eyeVec, in floati lightColor,
out float: diffuseColor, out float3 specularColor)

float diffuselInt = saturate(dot (normal, lightVWec)):
diffuseColor = diffuselInt * materialkd * lightColor:

floati reflectWec = reflect(-lightVec, normal):;

float specularlInt = saturate(dot (reflectVec, eyeVec)]):
specularInt = pow(specularlInt, materialshininess) ;
specularColor = specularInt * materialEs * lightColor:

EesBixeBllIuimination

~ Demo — XNA

IANGFe a0 n

We can define a range for point and spot lights
and use it to attenuate the light intensity

= The attenuation determines how fast the light
intensity decreases

- Attenuation can be constant, linear, quadratic, etc...

= Using attenuation the reflect light appears more
smooth over the surface

18

19

lplemeniing as & Pibxell Shader

Quadratic Attenuation Function

Lyange — distance

Lintensity = Max , 0

Lrange
Shader Code
float lightDistance = length(IN.lightWVeo) :;
float attenuation = [(lightRadius - lightDistance) / lightRadius:

attenuation = pow(saturate (attenuation), 2):;

IAVGTEIUALIO I

~ Demo — XNA Multiple Lights

Technique 0 Technique 1

Environment reflection and refraction are
usually achieved through pre-computed or
dynamic maps

= The surround enviroment is rendered to textures

= These textures are mapped in a solid that covers
the entire scene (usually a Cube or a Sphere)

s Reflection and refraction vectors are used to access
these textures

It is possible to render the enviroment textures
on the fly

= Dynamic Cube Mapping

21

22

CubepMappine

The cube map texture is accessed as a 3-D
texture

= You can use a reflection or refraction vector to
access it

23

24

nplementding as a Piwell Shader

floatd PS CubeMapFeflect (vertexoutput IN) @ colord |

floatd n = normalize (IN.normal) :
floati e = normalize [IN.eyvelWeco) ;

df Beflection

floati reflectCoord = reflect(—-e, n):
floatid reflectColor
ff Refraction
floatsd refractCoord = refract(-e, n, 0.37);

floati refractlColor texXxCUEBE (cubemap sampler, refractCoord):

texCUBE (cubemap sampler, reflectCoord):

return floatd4(reflectColor * 0.9f + 0.1f * refractColor, 1.0fL):

Final = 90% reflection + 10% de refraction
Yes, you can use Fresnel term here

Demo — FX Composer

25

ILEXEUHES

Can be seen as a function that maps a
coordinate to a color

The function can be implemented either:
- From an image (texture access)
= From an algorithm (procedural)

26

EXGUTES

Mapping a texture over a sphere

Earth Texture

Sphere 3D Model

Earth texture from: http://www.oera.net/How2/TextureMaps2.htm

Mapped Sphere

27

EXGUTES

Sampling configurations

Nearest Filter Linear Filter

28

29

MUGERE X

TL
Combining textures MT, (coord) = Z T; (coord) *oc;
i=1
MT = Multi-texture access
T = Texture access

tex1

{f’ 4 tex1+tex2

" tex2 tex1 +tex2+tex3

.

tex3

Demo — FX Composer
= A_GlobalSingle
- B_Multitexture

30

Brocedualgliextiiies

Textures that are generated by algorithms

There are some base models that we can use:
Noise (Perlin, 85)

Cellular (Worley, 96)

Analytical functions

Others...

31

Brocedu;alFRextuie’s

Interesting features

= Parametric control

- Compact representation (you just need to store a
few parameters)

- Some algorithms are easy to implement
Problems

- Aliasing

- Control over details

- Performance

32

33

210 ce dULEAINREXGUITES

Noise (Perlin, 85)
= Tries to model random behavior observed on nature

Desired properties

- Statistically invariant to orientation and translation:
Maintains the noise appearance over the space

- Limited dynamic range:

Allows the noise to be sampled at different scales
without aliasing

34

EROcEedULEAINIEXGUT;

Marble generated from one 3D noise function
- Maps the marble structure over the space

floatid procedural marble3D(floati pnt)d
float
¥ = pht.vy*pd4+p3 + pi2¥*noise(pnt, pl):
¥y = sin(y*HM PI):
return (marble color(y)):

P1, p2, p3 and p4 are the parameters to the marble
texture generation based on the noise function

35

2o cedunalWiiextune’s

Cellular texture (Worley, 96)

= F_(x) = distance towards the nt" closest point
= F (x) <=F,_,,(x)

F3 F2 - F1

Images from Texturing & Modelling Book

36

Procedural Teatures

Images from Texturing & Modelling Book

Erocedunaliexdiines

Demo — FX Composer
= C_ProceduralSquare
= D_ProceduralMarble

37

Imulatronyorah) eFailledfSurraces

In the real world, objects are often composed
of highly detailed surfaces

= Mesostructure: small scale details: bumps,
roughness, etc...

= Microstructure: micro details that are visually
indistinguishable but might change how the light is
reflected

Problems

= Require millions of triangles to be computationally
represented (boundary representation)

= Storage and processing of a big amount of data,
unfeasible for real-time rendering

38

Lucy model
Stanford University

Scanned model
- 116 million triangles

- 325 MB uncompressed

39

YetalTediSUraCES

Solution

- Simulate the surface details without increasing its
surface complexity

Some well known techniques
= Bump Mapping

= Normal Mapping

= Offset Parallax Mapping

- Relief Mapping

- Parallax Offset Mapping

= Cone Step Mapping

41

' The surface normals are stored in a texture
(normal map) that is mapped to the surface

= The normal’s XYZ axes are mapped to the texture’s
RGB channels

= Lighting is computed using the normal map

Simulated Surface

/

17
. o //,
\ Real Surface

42

INormall @il

The computation is made in the tangent space

= Tangent base formed by the Tangente, Binormal
and Normal vectors

Why?
= Normal map became independent of the surface

INoriall v @iy Sinacler

Vertex Shader — Steps:

= Transform the view and light vectors to the tangent
space

Fragment Shader — Steps:
- Read the pixel’s normal from the normal map

- Light the pixel using its new normal, the view
vector and the light vectors

43

Implementine

U /Y Tangent space [(Tangent, binormal, normal)
ég floatdix3 tangentMap = floatixid (IN.tangent, IN.binormal,
ig tangentMap = transpose (mul (tangentMap, matil)) »;
s
X F/ Wiew and Light wector
ég floatdi eyevVeo = wvertexPos - matVI[3] .xv=;
()] D0T.eyeVWeco = mwul (eyeVeco, tangentMap) !
> floatd lightVWec = lightPos - wertexPos:
OOT. lightVeos = mul (lightWVec, tangentMap):
return OUT;
A Wiew and Light wector
“ floati v = normalize(eyeVeco) ;
4g floati 11 = normalize(lightWec) ;
©
i - :
v /7 Diffuse and Normwal texture
?B floatd color = texzaD(color mwap, uvl) . .xXvEe;
iE floats n = texXaD(cone mwap, uvl):

n.xy = n.xy * 2.0 - 1.0;
return phongZhadingin, 11, —-v, color):;

IN.normal) ;

44

real surface

: eye
polygon \

T(actual) T(corrected)

. ffset
height map eree

—
N\

eye vector

45

An heuristic to handle the parallax effect

= Improve the normal mapping result

Images from Parallax mapping
with offset limiting [Welsh 04]

46

ppllemeniing as & 1Pbxel Shadler

Calculate the correct texture coordinate
based on the parallax offset

float offset = texzD(cone map, IN.uvwl).w *
parallax3cale — parallaxBias:
IN. w0 += normalize (IN.eyveVec) * offset;

47

ReliexpMappineIROMIMA i

A powerful technique to render very detailed
surfaces accurately

= Uses a ray-tracing algorithm for the ray-heightfield
intersection on the GPU

= Needs a lot of iterations to find the correct viewed
poisition over the surface

Detalllied! SuEaees

Demo — Detailed Surfaces

48

49

POSFLPRrOCESSIIN

Effects that are applied over the rendered
image (or render targets)

= A pos-processing shader may have many input and
output textures

—>

InputTexture 1 MZ OutputTexture 1

>

InputTexture N OutputTexture N

BOSIZEEOCESSTING,

Digital Image Processing (DIP) algorithms that
can be applied

- Radiometric transformations

Contrast, brightness, and grayscale conversion
- Filters

Blur, edge detection
- Image composition

Radial motion blur

50

Contrast and Brightness

>
1

Original

0 0.5 1
Contrast (c)

F(x,y) = [F(x,y)=0.5]*c + 0.5

CEBEATS XOIINAGIOINS

51

>
0 1

Brightness (b)

F(x,y) = F(x,y) + b

Rad10meEtICRBLATIS FORIMALIONS

Grayscale conversion

- Considering the HSV color space
Gray=V=(R+G+B)/3
Gray =V = Max(R, G, B)
- Considering the humam perception (YIQ)
- The YIQ color space is used in the NTSC signal
Gray = Y = R*0.299 + G*0.587 + B*0.114

52

Demo — FX Composer
= E_ppBrilhoContraste
= F_ppCinza

CEREATS KON A GIOINS

53

Resulting Image

54

Eilters
Blur
Original Image 11].11].11
A1].11].11
A1].11(.11

Complexity: O(n?)

Edge Detection

0]1]-1]0
114 | -1
0|]-1]0

Blutaiiltver;

This filter can be optimized using two passes
simpler passes

Original Image Temporary Buffer Final Image

Complexity: O(n)

Edge Detetion

Horizontal Blur

Vertical Blur

56

2

EIGCERS

Demo — FX Composer
= G_ppBlur
- H_ppLaplace

ROSEERLEOCES STV

Composed effects

- Some effects are composed by many rendering

passes, where it is necessary to use some auxiliary
buffers (or textures)

- In this case, it is necessary to have a rendering flow
control (usually implemented in software)

The rendering flow control should save resources
(video memory) and manage the render targets

Examples

- Bloom, Cartoon Rendering, outros...

58

B10G 1

Try to simulate the light expansion over bright
surfaces

. Effect perceived in the real world

. Lights, Reflections and so on

It is often used in with HDR (High Dynamic
Range) techniques

59

Perspective

Mode: Orhit

Blending
>

Threshould

Horizontal Blur

Vertical Blur

Final Result

60

Render a scene like a hand drawn cartoon
= Fixed and small number of tones
= Edge outline

61

Maps the result of a phong lighting model to a
fixed number of tones (usually two or three)

IF Phong(x, vy, z) < 0.5
Intensity = 0.7,

ELSE
Intensity = 1
A
1 —
0.7 ;
: >
0 0.5 1

Original Lighting Quantized Lighting
Using two tones

Cartoon Rendler)

Original
Image

Final Image

63

POSFLPRrOCESSIIN

Demo — FX Composer
= |_Bloom
= Cartoon

64

In this lecture we presented some effects that
are used in current commercial games

> All these effects are implemented on modern
GPUs

In a near future the GPU will be completly
programmable and its fixed stages removed

- Modern APIs doesn’t support the fixed pipeline
anymore (DirectX 10, XNA and OpenGL ME)

- Nowadays there are still a few stages that remains
fixed: Rasterization and Output Merger

65

66

1 nEynR Y(@wY

Bruno P. Evangelista

www.BrunoEvangelista.com
bpevangelista@gmail.com

Alessandro R. Silva

www.AlessandroSilva.com
alessandro.ribeiro.silva@gmail.com

“For what will it profit a man if he gains the whole
world and forfeits his soul? Or what will a man
give in exchange for his soul?” Matthew 16:26

http://www.brunoevangelista.com/
mailto:bpevangelista@gmail.com
http://www.alessandrosilva.com/
http://www.alessandrosilva.com/
mailto:alessandro.ribeiro.silva@gmail.com
mailto:alessandro.ribeiro.silva@gmail.com
mailto:alessandro.ribeiro.silva@gmail.com

