
Bruno P. Evangelista (UFMG)

Alessandro R. Silva (UFMG)
Revision 2



2

The fast evolution of the programmable 
graphics hardware (GPUs) are making the games 
very realistic!

Is it still possible to distinguish between a game 
scene and a real-life picture?



3



4

The modern GPUs enable us to create many 
rendering effects

We can use these effects to create very realistic
environments

Or even non-realistic environments

In this lecture we will discuss and show some 
effects that are commonly used in games



5

Rendering Pipeline and Shaders (Quick Review)

Shader Languages
Effects

Per-Pixel Illumination
Environment Reflection/Refraction
Texturing/Multi-texturing
Procedural Texture Generation
Simulation of Detailed Surfaces

Pos-Processing Effects
Radiometry
Bloom
Cartoon Rendering



6

For many years, graphics APIs such as DirectX 
and OpenGL used a fixed rendering pipeline

The processes executed within each stage of the 
rendering pipeline were pre-programmed in 
hardware and cannot be modified

For example: Transformations, lighting and so on...

It was only possible to configure a few parameters 
on the pipeline

Result: Games with resembling graphics!



7

Meantime...

The cinema industry already had tools capable of
programming the rendering of the scenes

RenderMan

Shader language specification created by Pixar in 
1988

Nowadays there are some open-source and
commercial implementations

However, those tools were used just for offline 
rendering! =(



8

Small programs that run into the GPU

Allow the programming of some stages of the 
rendering pipeline

New things that you can do:

Real world illumination models

Rendering of very detailed surfaces

Pos-processing over the scenes

And we can use everyting in real-time!



9

Shaders that run in different stages of the GPU 
have different names

Vertex Shader – Vertex Processing Stage

Pixel Shader – Pixel Processing Stage

Geometry Shader – Geometry Processing Stage



10

Rasterization

Fragment
Processing

Final
Image

Vertex Data
(Model Space)

Other Memory Resources
(Buffers, Textures, Constants, etc)

Geometry
Processing

Output
Merger

Vertex
Processing

Data
Programmable stage
Non-Programmable stage



11

Videos and Examples



12

Offline Rendering

RenderMan – PRMan Pixar/Other implementations

Gelato – nVidia

Real-time Rendering

HLSL (High Level Shading Language) – Microsoft
Used on DirectX e XNA

GLSL (OpenGL Shading Language) – 3D Labs
Used on OpenGL

Cg (C for Graphics) – nVidia
Can be used on both DirectX and OpenGL



13

Has a small set of instrinsic functions

Arithmetic operations, texture access and flow
control

Has some C/C++ data types, besides vectors 
and matrices

bool, int, half, float, double

vectors (floatN, boolN, ...), matrices (floatNxM, ...)

texture, sampler, struct

A shader code looks like a matematical 
equation



14

The Blinn-Phong algorithm is commonly used 
in the graphics APIs for lighting

Empirical model

Light is represented by three separated
components: ambient, diffuse and specular

Light componentes
Ambient: Light equally scattered in the scene

Diffuse: Light that interacts with the surfaces

Specular: Light that is perfectly reflected by the 
surface



15

Diffuse: Light that is equally
reflected in all directions
(isotropic)

Intensity can be calculated
according to Lambert’s law

Specular: Light that is reflected
preferred in one direction

Preferred reflection direction
calculated according to Snell’s 
law



16



17

Demo – XNA



18

We can define a range for point and spot lights 
and use it to attenuate the light intensity

The attenuation determines how fast the light 
intensity decreases

Attenuation can be constant, linear, quadratic, etc…

Using attenuation the reflect light appears more 
smooth over the surface



19

Shader Code

Quadratic Attenuation Function



20

Demo – XNA Multiple Lights



21

Environment reflection and refraction are 
usually achieved through pre-computed or 
dynamic maps

The surround enviroment is rendered to textures

These textures are mapped in a solid that covers
the entire scene (usually a Cube or a Sphere)

Reflection and refraction vectors are used to access
these textures

It is possible to render the enviroment textures 
on the fly

Dynamic Cube Mapping



22



23

The cube map texture is accessed as a 3-D 
texture

You can use a reflection or refraction vector to 
access it



24

Final = 90% reflection + 10% de refraction
Yes, you can use Fresnel term here



25

Demo – FX Composer



26

Can be seen as a function that maps a 
coordinate to a color

The function can be implemented either:

From an image (texture access) 

From an algorithm (procedural)



27

Mapping a texture over a sphere

Earth texture from: http://www.oera.net/How2/TextureMaps2.htm

Earth Texture

Sphere 3D Model

Mapped Sphere



28

Sampling configurations

Nearest Filter Linear Filter



29

Combining textures

tex1

tex2

tex3

tex1+tex2

tex1 +tex2+tex3

MT = Multi-texture access
T = Texture access



30

Demo – FX Composer

A_GlobalSingle

B_Multitexture



31

Textures that are generated by algorithms

There are some base models that we can use:

Noise (Perlin, 85)

Cellular (Worley, 96)

Analytical functions

Others...



32

Interesting features

Parametric control

Compact representation (you just need to store a 
few parameters)

Some algorithms are easy to implement

Problems

Aliasing

Control over details

Performance



33

Noise  (Perlin, 85)

Tries to model random behavior observed on nature

Desired properties

Statistically invariant to orientation and translation:

Maintains the noise appearance over the space

Limited dynamic range:

Allows the noise to be sampled at different scales
without aliasing



34

Marble generated from one 3D noise function

Maps the marble structure over the space

P1, p2, p3 and p4 are the parameters to the marble 
texture generation based on the noise function



35

Cellular texture (Worley, 96)

Fn(x) = distance towards the nth closest point

Fn(x) <= Fn+1(x)

Images from Texturing & Modelling Book



36

Images from Texturing & Modelling Book



37

Demo – FX Composer

C_ProceduralSquare

D_ProceduralMarble



38

In the real world, objects are often composed 
of highly detailed surfaces

Mesostructure: small scale details: bumps, 
roughness, etc...

Microstructure: micro details that are visually 
indistinguishable but might change how the light is 
reflected

Problems
Require millions of triangles to be computationally 
represented (boundary representation)

Storage and processing of a big amount of data, 
unfeasible for real-time rendering 



39Lucy model

Stanford University

Scanned model

- 116 million triangles 

- 325 MB uncompressed 



40

Solution
Simulate the surface details without increasing its
surface complexity

Some well known techniques
Bump Mapping

Normal Mapping

Offset Parallax Mapping

Relief Mapping

Parallax Offset Mapping

Cone Step Mapping



41

The surface normals are stored in a texture 
(normal map) that is mapped to the surface

The normal’s XYZ axes are mapped to the texture’s 
RGB channels

Lighting is computed using the normal map

Simulated Surface

Real Surface



42

The computation is made in the tangent space

Tangent base formed by the Tangente, Binormal
and Normal vectors

Why?

Normal map became independent of the surface



43

Vertex Shader – Steps:

Transform the view and light vectors to the tangent 
space

Fragment Shader – Steps:

Read the pixel’s normal from the normal map

Light the pixel using its new normal, the view
vector and the light vectors



44
V

e
rt

ex
Sh

ad
e

r
P

ix
e

lS
h

ad
e

r



45

An heuristic to handle the parallax effect

Improve the normal mapping result

Images from Parallax mapping 
with offset limiting [Welsh 04]



46

Calculate the correct texture coordinate
based on the parallax offset



47

A powerful technique to render very detailed 
surfaces accurately

Uses a ray-tracing algorithm for the ray-heightfield 
intersection on the GPU

Needs a lot of iterations to find the correct viewed
poisition over the surface



48

Demo – Detailed Surfaces



49

Effects that are applied over the rendered 
image (or render targets)

A pos-processing shader may have many input and
output textures

InputTexture 1
...

InputTexture N

Shader

OutputTexture 1
...

OutputTexture N



50

Digital Image Processing (DIP) algorithms that 
can be applied

Radiometric transformations

Contrast, brightness, and grayscale conversion

Filters

Blur, edge detection

Image composition

Radial motion blur



51

Contrast and Brightness



52

Grayscale conversion

Considering the HSV color space 

Gray = V = (R + G + B)/3

Gray = V = Max(R, G, B)

Considering the humam perception (YIQ)

The YIQ color space is used in the NTSC signal 

Gray = Y = R*0.299 + G*0.587 + B*0.114



53

Demo – FX Composer

E_ppBrilhoContraste

F_ppCinza



54

Resulting ImageOriginal Image .11 .11 .11

.11 .11

.11 .11 .11

Edge Detection

.11

0 -1 0

-1 -1

0 -1 0

4

Blur

Complexity: O(n2)



55

Temporary BufferOriginal Image Final Image

This filter can be optimized using two passes 
simpler passes

Complexity: O(n)



56

Edge Detetion

Vertical Blur

Horizontal Blur

Original Image



57

Demo – FX Composer

G_ppBlur

H_ppLaplace



58

Composed effects

Some effects are composed by many rendering
passes, where it is necessary to use some auxiliary
buffers (or textures)

In this case, it is necessary to have a rendering flow
control (usually implemented in software)

The rendering flow control should save resources
(video memory) and manage the render targets

Examples

Bloom, Cartoon Rendering, outros...



59

Try to simulate the light expansion over bright 
surfaces

Effect perceived in the real world

Lights, Reflections and so on

It is often used in with HDR (High Dynamic 
Range) techniques



60

Original Image

Threshould Horizontal Blur Vertical Blur

Final Result

Blending



61

Render a scene like a hand drawn cartoon

Fixed and small number of tones

Edge outline



62

Maps the result of a phong lighting model to a 
fixed number of tones (usually two or three)



63

Original 
Image

Final Image



64

Demo – FX Composer

I_Bloom

Cartoon



65

In this lecture we presented some effects that 
are used in current commercial games

All these effects are implemented on modern 
GPUs

In a near future the GPU will be completly 
programmable and its fixed stages removed

Modern APIs doesn’t support the fixed pipeline
anymore (DirectX 10, XNA and OpenGL ME)

Nowadays there are still a few stages that remains
fixed: Rasterization and Output Merger



66

Bruno P. Evangelista
www.BrunoEvangelista.com

bpevangelista@gmail.com

Alessandro R. Silva
www.AlessandroSilva.com

alessandro.ribeiro.silva@gmail.com

“For what will it profit a man if he gains the whole 
world and forfeits his soul? Or what will a man 
give in exchange for his soul?” Matthew 16:26

http://www.brunoevangelista.com/
mailto:bpevangelista@gmail.com
http://www.alessandrosilva.com/
http://www.alessandrosilva.com/
mailto:alessandro.ribeiro.silva@gmail.com
mailto:alessandro.ribeiro.silva@gmail.com
mailto:alessandro.ribeiro.silva@gmail.com

