
Improving Boids Algorithm in GPU using Estimated Self Occlusion

Alessandro Ribeiro da Silva1

Universidade Federal de

Minas Gerais

Wallace Santos Lages2

Universidade Federal de

Minas Gerais

Luiz Chaimowicz3

Universidade Federal de

Minas Gerais

Abstract

Behavioral models are used in games and computer graphics for
realistic simulation of massive crowds. In this paper, we present a
GPU based implementation of Reynolds [1987] algorithm for sim-
ulating flocks of birds and propose an extension to consider en-
vironment self occlusion. We performed several experiments and
the results showed that the proposed approach runs up to three
times faster than the original algorithm when simulating high den-
sity crowds, without compromising significantly the original crowd
behavior.

Keywords:: Boid simulation, GPGPU

Author’s Contact:

1alessandrosilva@ufmg.br, 1www.alessandrosilva.com
2wlages@ufmg.br
3chaimo@dcc.ufmg.br

1 Introduction

The simulation of a large number of individuals has applications in
many different games, whether to compose the background scene
in games (GTA, Rockstar Games, 1997) or as part of the gameplay
itself (Pikimin, Nintendo, 2001). As members of the crowd meet
each other, they interact by coordinating their motion accordingly
to the goal of each individual. As examples we may cite the motion
of flocks of birds, banks of fishes, herds of land animals, or even
groups of human characters.

The first behavioral models appeared as extensions of particle
systems used to model water, fire, grass and atmospheric effects
[Reeves 1983]. Other extensions soon followed. In 1987, Reynolds
presented a distributed model for controlling flocks of birds that
considered interactions between agents [Reynolds 1987]. Although
every agent, or boid, takes decisions considering only its local per-
ception of the world, the sum of the behaviors enable the flock to
present a very real-like motion.

However, to simulate local perception, one must be able to identify
neighbors among all existing agents. The naive option (comparing
each boid to the other) leads to a O(n2) behavior that becomes pro-
hibitive for a large number of boids. So, to obtain an interactive
system, we must have both fast implementations and low complex-
ity algorithms.

To speedup the process of finding neighbors, researchers have used
different spatial structures [Shao and Terzopoulos 2005], [Reynolds
2006]. Instead of searching in the whole population, this enables a
local search in a pre-sorted structure, thus lowering the asymptoti-
cal complexity. Another approach used is to avoid the computation
when neighbors do not change much [Chiara et al. 2004] or even up-
date only a small percentage of the population per frame [Reynolds
2006].

On the other hand, current graphics architectures exhibit a large de-
gree of parallelism which can be used for a highly efficient boid
computation and display. GPU implementations are presented by
Court and Musse [2005] and Chiara et al. [2004]. A fast imple-
mentation on the Playstation3 hardware was presented by Reynolds
[2006].

In this work we present an implementation of the model proposed
by Reynolds [1987], [1999] for a Geforce 8800 GPU. We also
present an extension to estimate self occlusion in the neighbor com-
putation and show how it can be used to improve the simulation

performance. Our idea is to estimate the number of boids occlud-
ing the view cone of each boid and avoid considering invisible boids
in the behavior calculation. This technique is orthogonal to the one
mentioned above and specially useful for very dense populations.

The remainder of this paper begins with a review of the original
boid model and other related work. We then present the graphics
hardware mappings and algorithms we used to estimate density and
behavior. Finally, we present results and conclusions.

2 Related Work

Agent simulation for large crowds is very computing expensive.
Some techniques used to alleviate the problem are: parallelization,
use of spatial structures, and heuristics to reduce the update rate of
the crowd.

Quinn et al. [2003] presented a parallel pedestrian movement model
running over 11 processors Linux-based multicomputer with MPI.
They were able to simulate and render the motion of tens of thou-
sands of pedestrians in real time using a manager/worker organiza-
tion. Other researchers used the powerful parallelism of graphics
processors to speedup the processing and display of large crowds.
Chiara et al. [2004] present a massive simulation and rendering of
a behavioral model using graphics hardware. They rendered a 3D
scene with a flock of 8000 animated bird models at 20 fps. They
describe the use of vector fields to manage obstacle avoidance and
a heuristic that avoids recomputing the behaviors when the list of
neighbors does not change. Courty and Musse [2005] used the GPU
to compute a physics-based animation model which considers the
influence of gaseous phenomena in the behavior of the crowd. This
system, called FastCrowd, ran a crowd of 10,000 individuals at 50
fps without visualization and at 35 fps using impostors. The behav-
ior model is very complex and include new psycho-physical forces.
In 2006, Reynolds published an implementation for the PLAYSTA-
TION3 hardware [Reynolds 2006]. He was able to concurrently
simulate and display simple crowds of 15,000 individuals at 60
frames per second.

Since the number of individuals is large and the global behav-
ior changes slowly, many researchers decoupled simulation update
from rendering [Reynolds 2006], [Treuille et al. 2006]. As long as
the position is properly updated, errors are very difficult to observe.
On Reynolds implementation, [Reynolds 2006] only 1/8 of the in-
dividuals are updated at each frame. We preferred not to take this
approach. Every simulation is fully computed for every individual
on every frame.

Another way to improve speed is to use spatial hierarchies to
quickly exclude individuals too far to influence the one being com-
puted. For GPU computation, the most common data structure
is the regular grid [Shao and Terzopoulos 2005],[Reynolds 2006].
More sophisticated data structures are more complex to navigate
and therefore, slower. Some works do not use spatial structures at
all and rely solely on brute force [Drone 2007].

As mentioned before, the main contribution of this work is a GPU
implementation of the original algorithm by Reynolds, that con-
siders visibility into the behavior of each boid. The visibility is
estimated by computing the density of boids in the field of view.

3 Background Information

Visibility Culling

The goal of visibility culling is to quickly reject parts of the scene
that are not visible for a given viewpoint. In computer graphics,
occlusion culling is used to avoid processing or drawing such parts

��� � ������	
�� �� ���������� ������
�� ����� � ���� ����� ���� ���
����� � �� !�"��#�� $� � $%

&'' ������ � '��!� �(�)**�+%$)�$,$

Figure 4: Mapping of the 3D world to grid space and linked list
indexing.

to clear the grid content to zero. Inside the shader, all access and
index conversions must subtract 1 from the elements to be accessed.
A value of −1 after this operation means an invalid or null index.

4.3 Algorithm

As mentioned before, the execution flow can be divided in three
distinct steps. The first step is the update of the grid structure (1).
This is done on the CPU. Following, boids simulation is computed
in the GPU (2) and finally they are rendered on the screen (3).

Step One: Grid update The first step objective is to associate each
boid to a grid cell. This is necessary since at each step boids move
among them. The application downloads the texture containing the
position from the GPU and uses the values to update the internal
grid indexes and the indexes of the position list. The grid construc-
tion is done in O(m3 + n), where m is the grid dimension and n
the number of boids. After the construction, the application uploads
the updated textures back to the GPU(Algorithm 1).

Algorithm 1 Grid structure construction algorithm.

1: Pos← download positions from GPU
2: Grid← clear grid content
3: for i← 0 to n do
4: Pos[i].w ← 0
5: GridIndex← Compute cell of pos[i]
6: if Grid[GridIndex]exists then
7: Pos[i].w ← next address pos + 1
8: else
9: Grid[GridIndex]← n + 1

10: end if
11: end for
12: GPU Positions← upload Pos from CPU
13: GPU Grid← upload Grid from CPU

Step Two: Simulation The simulation step is done entirely inside
the GPU, including the search for neighbors and the calculation
of the vector for each behavior. The grid is used to estimate the
visibility for each boid (Algorithm 2).

Step Three: Rendering To render the position of each boid, we
used a static 3D model of a bird without texture. The model has
268 triangles and normals. The geometry was compiled in a display
list [Opengl et al. 2005]. Since an OpenGL display list is static,
we added a parameter to index the information of each boid in the
position array. Using this method, it is possible to render all the
static models with only one API call, reducing considerably the
overhead due to matrix calls.

4.4 Grid cell visibility

The estimative of the visibility uses three levels of tests to avoid
unnecessary processing of grid cells and individuals inside them.

Algorithm 2 Simulation algorithm.

1: GridPos← Calculate the boid grid position
2: for i← all the neighbor grid cell do
3: GridIndex← Compute cell of pos[i]
4: if i is visible then
5: for j ← all the neighbor in grid cell i do
6: if j is visible then
7: Update Cohesion,

Alignment and Separation
8: end if
9: end for

10: end if
11: end for
12: Desired force← force based on vectors
13: lerp← linear interpolation factor
14: FinalForce ← PreviousForce + (DesiredForce −

PreviousForce) ∗ lerp
15: FinalTranslation← Translation + FinalForce
16: Update axis ′y′ and ′z′

17: Store F inalTranslation, F inalForce, ′y′ and ′z′

First level: Maximum grid level

In the first test we select potential grid cells based on the max vision
distance parameter. The output is a cube of cells with the local
maximum cell count in all grid’s direction (x,y,z) according to the
Equation 2 (Figure 5a).

CellCount =

⌈

visionDistance× (GridSize− 1)

WorldGridDimention

⌉

+ 1. (2)

Figure 5: Visibility tests: a) Maximum grid range; b) Sphere-cone
test; c) Element test.

Second level: Sphere-cone test

This test filters the grid cells that are not visible using sphere-cone
collision. First we define spheres for each cell using the grid center
as the sphere center and half of cell diagonal as the sphere radius.
From the element orientation we construct a inverse rotation matrix
that puts each grid cell sphere in the element local space. The cone-
sphere test executes as a 2D test using the length of the sphere from
local Z axis.

��� � ������	
�� �� ���������� ������
�� ����� � ���� ����� ���� ���
����� � �� !�"��#�� $� � $%

&'' ������ � '��!� �(�)**�+%$)�$,-

We evaluated the influence of visibility estimation on rendering
time. The number of boids changed from 256 to 207936 and the
grid size changed according to the Equation 3. The vision angle
was fixed in 45 degrees and the vision distance in 100 units. Our
virtual environment extends from -500 to 500 units in the three axis.
The model used for each boid has 268 triangles. Data was collected
over a range of 45 different population sizes. The time for each one
was obtained as the average of 30 frames.

The grid was an important factor for reducing the complexity of
neighbor search in the algorithm, which would otherwise be O(n2)
where n is the number of the boids.

Figure 10 shows the processing times of the different operations in
each simulation step. Notice that only the grid construct time does
not exhibit a linear increase. Since the grid construction needs to
clear the entire grid in main memory, and the grid increases accord-
ing the Equation 3, the total time increases accordingly to the grid
storage complexity (O(n3)).

Figure 10: Time to download, grid construction, upload and render
in milliseconds.

The upload time would have the same behavior, since it uploads the
contents of the grid to the GPU, however it remains below all the
other times as the number of boids increases. The render time and
download time increases linearly with the number of boids. The
grid construction time very low compared to the render time.

The simulation time is shown separately in Figure 11 because it is
the only metric affected by the visibility estimation algorithm. No-
tice that the time near 70k and 192k boids increases abruptly, prob-
ably because these values affects some GPU internals, like cache.
As expected, the simulation with visibility estimation consume less
time than the algorithm without it.

The steep jumps on Figure 11 are similar to the ones observed
on the NV4X Nvidia GPU architecture when resolving dynamic
branches [Harris and Buck 2005]. However we are not sure if this
also applies to the newer Tesla architecture (G8X, G9X). More tests
would be required to settle down this point.

Figure 11: Simulation time in milliseconds with and without the
visibility estimation.

To evaluate the time improvement of our approach, we computed
the ratio (speedup) between the time taken by our implementation
of Reynolds algorithm divided by the time taken by same algorithm
with visibility estimation. Figure 12 shows the speedup obtained
for an increasing number of boids. Notice that for few boids the
speed up is smaller than 1, but for 10k boids or more, the speed up
increases in almost a constant rate.

Figure 12: Simulation with visibility speedup.

When simulating boids, the expected result is a believable group
simulation. However, after we turned on the visibility estimation,
the simulation diverged from the behavior of the Reynolds origi-
nal algorithm. This was expected since we change the dynamical
parameters of the system. However very similar results were ob-
tained by adjusting the steering constants. With the new parameters
we could achieve a reasonable simulation with an speedup of more
than 3 times of update rate. Since most crowd models usually re-
quire a lot of tweaking we do not see this as a real concern.

Figure 13 shows one example of a simulation with 20164 boids.

Figure 13: Simulation example of 20164 boids.

6 Conclusion and Future Work

We presented a mapping of a behavioral model to run in a GPU and
proposed one extension to optimize the neighbor search by using
a visibility estimation. The experimental results showed that this
technique can be very effective in reducing the total complexity
of crowd simulation. Some of the future extensions for this work
include:

• Evaluate other types of occlusion estimation.

• Optimization of the linked list structure for cache access.

• Use a 2D texture for encoding the grid structure instead of a
3D

• Evaluate other spatial subdivision structures

��� � ������	
�� �� ���������� ������
�� ����� � ���� ����� ���� ���
����� � �� !�"��#�� $� � $%

&'' ������ � '��!� �(�)**�+%$)�$,(

• Include environment obstacle avoidance.

References

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In VMV, 233–240.

COHEN-OR, D., CHRYSANTHOU, Y., AND SILVA, C. 2000. A
survey of visibility for walkthrough applications. Proc. of EU-
ROGRAPHICS’00, course notes.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, 206–212.

DRONE, S. 2007. Real-time particle systems on the gpu in dy-
namic environments. In SIGGRAPH ’07: ACM SIGGRAPH
2007 courses, ACM, New York, NY, USA, 80–96.

HARRIS, M., AND BUCK, I. 2005. GPU Gems 2 - Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation. Addison Wesley, ch. GPU Flow-Control
Idioms, 547–555.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-
layered projection algorithm for visible set estimation. IEEE
Transactions on Visualization and Computer Graphics 6, 2, 108–
123.

KOLB, A., LATTA, L., AND REZK-SALAMA, C. 2004. Hardware-
based simulation and collision detection for large particle
systems. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, New York, NY, USA, 123–131.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD,
M. J. 2003. Cg: a system for programming graphics hardware
in a c-like language. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, ACM Press, New York, NY, USA, 896–907.

OPENGL, SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T.
2005. OpenGL(R) Programming Guide : The Official Guide to
Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley
Professional, August.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 1, 80–113.

QUINN, M. J., METOYER, R., AND HUNTER-ZAWORSKI, K.
2003. Parallel implementation of the social forces model. In
in Proceedings of the Second International Conference in Pedes-
trian and Evacuation Dynamics, 63–74.

REEVES, W. T. 1983. Particle systems—a technique for modeling
a class of fuzzy objects. ACM Trans. Graph. 2, 2, 91–108.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. Proceedings of the 14th Annual Conference
on Computer Graphics and interactive Techniques, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous char-
acters. In Proceedings of Game Developers Conference 1999,
Miller Freeman Game Group, San Francisco, California, 763–
782.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, 113–121.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, 19–28.

SILLION, F. X. 1995. A unified hierarchical algorithm for global
illumination with scattering volumes and object clusters. IEEE

Transactions on Visualization and Computer Graphics 1, 3, 240–
254.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. ACM Trans. Graph. 25, 3, 1160–1168.

��� � ������	
�� �� ���������� ������
�� ����� � ���� ����� ���� ���
����� � �� !�"��#�� $� � $%

&'' ������ � '��!� �(�)**�+%$)�$,*

